School of Materials Science and Engineering Dalian University of Technology


当前位置: 首页>>学术动态>>正文

美国工程院院士 中国工程院外籍院士汪正平教授学术报告
2019-07-23 09:59 赵宁    (点击: )

报告题目:Composition Tuned Hybrid Perovskites: From Materials Engineering & Device Design for Efficient, Stable Perovskite Solar Cells


主 讲 人:汪正平(C.P. Wong




A perovskite solar cell is a type of solar cell which includes a perovskite structured compound, most commonly a hybrid organic-inorganic lead or tin halide-based material, as the light-harvesting active layer. Perovskite materials such as methylammonium lead halides and all-inorganic cesium lead halide, are low cost to produce and simple to manufacture. (1) In traditional sequential deposition, compact PbI2 film may hinder the diffusion of MAI solution across the entire PbI2 film, thus leading to the unreacted PbI2 residue in the interface between perovskite and TiO2. To address the issue of PbI2 residue, we developed a new method to synthesize porous PbI2 film. We started from the precursor of PbAc2 and MAI with the molar ratio of 1:2, and thermally unstable CH3NH3(CH3COO) will be released under heating condition, thus producing pores in the PbI2 film due to volume contraction. After loading with MAI solution, p-PbI2 will improve the conversion of PbI2 to perovskite. (2) Not only the instability issue caused by spiro, we also know that spiro is the most expensive material in such device structure. Actually, researchers have made some efforts to develop new HTLs to replace spiro, which can be mainly classified into two types: synthesizing updoped organic materials and developing low-cost inorganic materials. However, complex synthesis process may hinder large-scale production of organic materials. On the other hand, PSCs with PbS and CuI HTLs suffer from the issue of low-efficiency, and CuSCN can react with perovskite. In this regard, I’d like to propose an alternative p-type material: NiO. Low-temperature solution-processed NiOx HTL can significantly improve the stability of the whole device.


汪正平教授,美国国家工程院院士,中国工程院外籍院士,香港科学院创院院士,美国佐治亚理工学院董事教授(最高荣誉教授),中国科学院深圳先进技术研究院荣誉教授。美国普渡大学化学系获学士学位;宾夕法尼亚州立大学化学系获硕士和博士学位。曾担任国际电子电器工程师协会(IEEE)院士、美国贝尔实验室高级会员,IEEE-CPMT(封装与制造技术协会)技术副会长、国际电子电器工程师协会的主席,“IEEE封装技术学报”、“高分子科学与工程学报”等国际期刊编委,“智能材料百科全书”主编。曾荣获IEEE-CPMT杰出贡献奖(19952002)、佐治亚理工学院Sigma Xi最佳教员科研奖(1999)、IEEE Millennium奖章(2000)、IEEE EAB教育奖(2001)、IEEE封装加工领域奖(2006)、Sigma Xi’s Monie Ferst奖(2007)以及加工工程(SME)’s TEEM奖(2008)。

汪正平教授多年来致力于电子封装材料的研究、开发与工程化应用,研究领域包括高分子材料、材料反应机理、IC封装、自组装加工、界面粘附以及纳米功能材料合成与表征。是有机高分子在器件封装应用领域研究的开拓者之一,成功开发多种封装新材料,开创性提出并实现传统“陶封”(ceramic packaging)材料与工艺改进为“塑封”(plastic packaging),大幅降低生产成本且提高性能,为半导体封装技术带来革命性影响,被誉为“现代半导体封装之父”。在ScienceAdvanced MaterialsJournal of the American Chemical SocietyNano EnergyACS NanoNano LettersECTC等国际期刊与学术会议上发表论文1000余篇,授权60余项美国专利,出版《高分子在电子和光子学应用》、《电子封装设计、材料、过程和可靠性》、《电子制造:无铅、无卤和导电胶材料》、《高级电子封装材料》、《纳米导电胶技术》等12本英文学术专著。